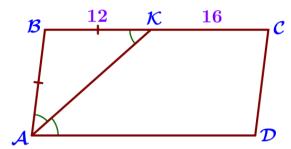
23. Геометрическая задача на вычисление Блок 1. ФИПИ ПРИМЕРЫ

1. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=12, CK=16.



Дано:

АВСD – параллелограмм, АК – биссектриса, АК∩ВС=К, ВК=12, СК=16.

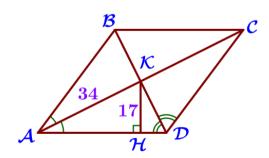
Найти: Равсо.

Решение:

- 1. Так как AK биссектриса, то $\angle BAK = \angle DAK$.
- 2. Так как ABCD параллелограмм, то AD||BC.
- 3. AD \parallel BC, AK секущая, тогда \angle BKA = \angle DAK по свойству накрест лежащих углов.
- 4. \angle BAK = \angle DAK (п. 1), \angle BKA = \angle DAK (п. 3), следовательно, \angle BAK = \angle BKA. Значит, \triangle ABK равнобедренный по признаку равнобедренного треугольника, АК основание, а AB = BK = 12.
- 5. $P_{ABCD} = 2(AB+BC) = 2(AB+BK+KC) = 2(12+12+16) = 80$.

OTBET: $P_{ABCD} = 80$.

2.1. Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.



Дано:

ABCD – ромб, $AC \cap BD = K$, AC = 68, KH – расстояние от точки K до AD, KH = 17.

Найти: углы ромба.

Решение:

- 1. Так как ABCD ромб и, следовательно, параллелограмм, то по свойствам параллелограмма: AK = KC = AC : 2 = 68 : 2 = 34 ($AC \cap BD = K$), $\angle C = \angle A$ и $\angle D = \angle B$.
- 2. Так как KH расстояние от точки K до AD, то KH \perp AD, а \angle AHK=90°.
- 3. Рассмотрим △АКН:

 \angle АНК = 90° (п. 2), тогда \triangle АКН – прямоугольный; КН = 17 (по условию), АК = 34 (п.1), следовательно, $\sin\angle$ КАН = $\frac{KH}{AK} = \frac{17}{34} = \frac{1}{2}$, то есть \angle КАН = 30°.

- 4. Так как ABCD ромб, то AC⊥BD, следовательно, \angle AKD=90°.
- 5. Рассмотрим △AKD:

 \angle AKD=90° (п.4), \angle KAD=30° (п.3), тогда по теореме о сумме углов треугольника найдем \angle ADK:

$$\angle$$
AKD+ \angle ADK+ \angle KAD=180°,
 \angle ADK=180°- \angle AKD- \angle KAD,
 \angle ADK=180°-90°-30°,
 \angle ADK=60°.

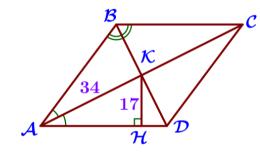
6. ABCD – ромб, AC и BD – диагонали, тогда по свойству диагоналей ромба:

AC – биссектриса угла \angle BAD, следовательно, \angle BAD= $2\angle$ KAH= 60° ; а BD – биссектриса угла \angle ADC, следовательно, \angle ADC= $2\angle$ ADK= 120° .

7. $\angle C = \angle A = 60^{\circ}$, $\angle D = \angle B = 120^{\circ}$.

Ответ: 60°; 120°; 60°; 120°.

2.2. Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.



Дано:

ABCD – ромб, $AC \cap BD = K$, AC = 68, $KH \perp AD$, $H \in AD$, KH = 17.

Найти: углы ромба.

Решение:

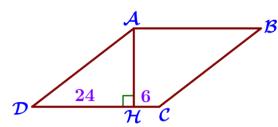
- 1. Так как ABCD ромб, AC \cap BD=K, то по свойствам ромба: AK=KC=AC:2=68:2=34, AD||BC, \angle C= \angle A и \angle D= \angle B.
- 2. Рассмотрим △АКН:

∠H = 90° (т.к. KH \bot AD), тогда △AKH - прямоугольный; катет KH = 17 (по условию), гипотенуза AK = 34 (п.1), KH = $\frac{1}{2}$ AK, следовательно, ∠KAH = 30°.

- 3. Так как ABCD ромб и AC диагональ, то $\angle BAD = 2\angle KAH = 60^{\circ}$ по свойству диагоналей ромба.
- 4. Так как AD||BC, AB секущая, то \angle BAD и \angle ABC односторонние и по свойству односторонних углов \angle BAD+ \angle ABC=180°, тогда \angle ABC=180°- \angle BAD=180°-60°=120°.
- 5. $\angle C = \angle A = 60^{\circ}$, $\angle D = \angle B = 120^{\circ}$.

Ответ: 60°; 120°; 60°; 120°.

3. Высота АН ромба ABCD делит сторону CD на отрезки DH=24 и CH=6. Найдите высоту ромба.



Дано:

ABCD – ромб, АН – высота, DH=24, CH=6.

Найти: АН.

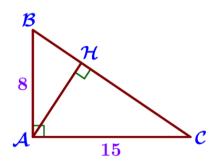
Решение:

- 1. Так как ABCD ромб, то все его стороны равны, тогда AD = DC = DH + HC = 24 + 6 = 30.
- 2. Рассмотрим $\triangle ADH$: $\angle H$ =90° (т.к. AH высота), следовательно, $\triangle ADH$ прямоугольный; DH=24 (по условию), AD=30 (п.1), AH найдем по т. Пифагора:

$$AD^2 = AH^2 + DH^2$$
, $AH^2 = 30^2 - 24^2$,
 $AH^2 = AD^2 - DH^2$, $AH^2 = 324$,
 $AH = 18$.

Ответ: АН=18.

4.1. Катеты прямоугольного треугольника равны 15 и 8. Найдите высоту, проведённую к гипотенузе.



Дано:

^ABC, ∠A=90°, AC=15, AB=8, AH – высота.

Найти: АН.

Решение:

1. Рассмотрим $\triangle ABC$: $\angle A=90^{\circ}$, AC=15, AB=8, тогда по теореме Пифагора найдем гипотенузу BC:

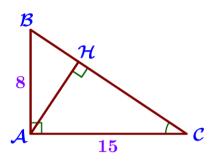
$$BC^{2} = AB^{2} + AC^{2},$$

 $BC^{2} = 8^{2} + 15^{2},$
 $BC^{2} = 289,$
 $BC = 17.$

 $2. \ \, S_{_{\!\!\!ABC}} = \frac{1}{2} AB \cdot AC \ \, \text{и} \ \, S_{_{\!\!\!\!ABC}} = \frac{1}{2} AH \cdot BC \, , \, \text{тогда} \, \, \frac{1}{2} AB \cdot AC = \frac{1}{2} AH \cdot BC \, , \, \text{то есть}$ $AB \cdot AC = AH \cdot BC \, , \, a \ \, AH = \frac{AB \cdot AC}{BC} = \frac{8 \cdot 15}{17} = \frac{120}{17} = 7 \frac{1}{17} \, .$

Otbet: AH = $7\frac{1}{17}$.

4.2. Катеты прямоугольного треугольника равны 15 и 8. Найдите высоту, проведённую к гипотенузе.



Дано:

 $\triangle ABC$ – прямоугольный, $\angle A$ = 90°, AC = 15, AB = 8, AH – высота.

Найти: АН.

Решение:

1. По условию △АВС – прямоугольный, АС=15, АВ=8, тогда по теореме Пифагора найдем гипотенузу ВС:

$$BC^{2} = AB^{2} + AC^{2},$$

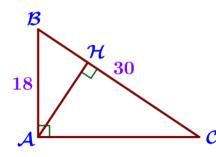
 $BC^{2} = 8^{2} + 15^{2},$
 $BC^{2} = 289,$
 $BC = 17.$

- 2. \angle AHC=90° (т. к. AH высота), \angle BAC=90° (по условию), то есть \angle AHC= \angle BAC .
- 3. Рассмотрим треугольники АВС и НАС:

 \angle AHC = \angle BAC (п. 2), \angle C – общий, следовательно, \triangle ABC \sim \triangle HAC по двум углам, тогда $\frac{AH}{AB} = \frac{AC}{BC}$, откуда $AH = \frac{AB \cdot AC}{BC} = \frac{8 \cdot 15}{17} = \frac{120}{17} = 7\frac{1}{17}$.

Ответ: $AH = 7\frac{1}{17}$.

5.1. Катет и гипотенуза прямоугольного треугольника равны 18 и 30. Найдите высоту, проведённую к гипотенузе.



Лано:

 $\triangle ABC$, $\angle A$ = 90°, AB = 18, BC = 30, AH – высота.

Найти: АН.

Решение:

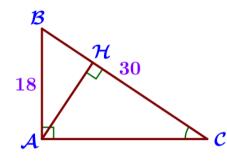
1. Рассмотрим $\triangle ABC$: $\angle A = 90^{\circ}$, AB = 18, BC = 30, тогда по теореме Пифагора найдем катет AC:

$$BC^2 = AB^2 + AC^2$$
, $AC^2 = 30^2 - 18^2$,
 $AC^2 = BC^2 - AB^2$, $AC^2 = 576$,
 $AC = 24$.

2. $S_{\triangle ABC} = \frac{1}{2}AB \cdot AC$, $S_{\triangle ABC} = \frac{1}{2}AH \cdot BC$, следовательно, $AB \cdot AC = AH \cdot BC$, от-куда $AH = \frac{AB \cdot AC}{BC} = \frac{18 \cdot 24}{30} = 14,4$.

Ответ: АН=14,4.

5.2. Катет и гипотенуза прямоугольного треугольника равны 18 и 30. Найдите высоту, проведённую к гипотенузе.



Дано:

 \triangle ABC, \angle A=90°, AB=18, BC=30, AH – высота.

Найти: АН.

Решение:

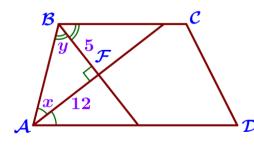
1. По условию △АВС – прямоугольный, АВ=18, ВС=30, тогда по теореме Пифагора найдем катет АС:

$$BC^{2} = AB^{2} + AC^{2},$$
 $AC^{2} = 30^{2} - 18^{2},$ $AC^{2} = BC^{2} - AB^{2},$ $AC^{2} = 576,$ $AC = 24.$

- 2. Рассмотрим △AHC: ∠AHC=90° (т. к. AH высота), тогда \sin ∠C= $\frac{AH}{AC}$.
- 3. Рассмотрим $\triangle ABC$: $\angle A = 90^{\circ}$ (по условию), тогда $\sin \angle C = \frac{AB}{BC}$
- 4. $\sin \angle C = \frac{AH}{AC}$ и $\sin \angle C = \frac{AB}{BC}$, следовательно $\frac{AH}{AC} = \frac{AB}{BC}$, то есть $AH = \frac{AC \cdot AB}{BC} = \frac{24 \cdot 18}{30} = 14,4.$

Ответ: АН=14,4.

6.1. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.



Дано:

ABCD – трапеция, AD \parallel BC, AF – биссектриса \angle A, BF – биссектриса \angle B, AF=12, BF=5.

Найти: АВ.

Решение:

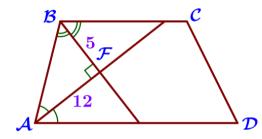
- 1. Пусть $x = \angle BAF$, $y = \angle ABF$.
- 2. Так как AF биссектриса $\angle A$ и $x = \angle BAF$, то $\angle BAD = 2x$.

- 3. Так как BF биссектриса \angle B и $y = \angle$ ABF, то \angle ABC = 2y.
- 4. AD||BC, AB секущая, тогда \angle BAD и \angle ABC односторонние и \angle BAD+ \angle ABC=180°, то есть 2x+2y=180°, а x+y=90°.
- 5. Рассмотрим $\triangle ABF$: по теореме о сумме углов треугольника $\angle A+\angle B+\angle F=180^\circ$, то есть $\angle F=180^\circ-(\angle A+\angle B)=180^\circ-(x+y)=90^\circ$, следовательно, $\triangle ABF$ прямоугольный, AB можно найти по т. Пифагора:

$$AB^2 = AF^2 + BF^2$$
, $AB^2 = 169$, $AB^2 = 12^2 + 5^2$, $AB = 13$.

Ответ: AB=13.

6.2. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.



Дано:

ABCD – трапеция, AD \parallel BC, AF – биссектриса \angle A, BF – биссектриса \angle B, AF=12, BF=5.

Найти: АВ.

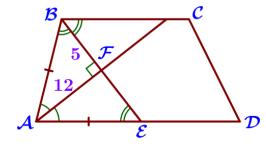
Решение:

- 1. Так как AF биссектриса $\angle A$, то $\angle BAD = 2\angle BAF$.
- 2. Так как BF биссектриса \angle B, то \angle ABC = $2\angle$ ABF.
- 3. AD||BC, AB секущая, тогда \angle BAD и \angle ABC односторонние и \angle BAD+ \angle ABC=180°, следовательно 2 \angle BAF+2 \angle ABF=180°, а \angle BAF+ \angle ABF=90°.
- 4. Рассмотрим $\triangle ABF$: $\angle BAF + \angle ABF = 90^{\circ}$, следовательно, $\triangle ABF -$ прямоугольный по признаку прямоугольного треугольника, тогда AB можно найти по т. Пифагора:

$$AB^2 = AF^2 + BF^2$$
, $AB^2 = 169$,
 $AB^2 = 12^2 + 5^2$, $AB = 13$.

Ответ: AB=13.

6.3. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.



Дано:

ABCD – трапеция, AD \parallel BC, AF – биссектриса \angle A, BF – биссектриса \angle B, AF = 12, BF = 5.

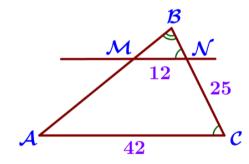
- 1. Пусть $BF \cap AD = E$.
- 2. AD \parallel BC, BE секущая, тогда \angle AEB= \angle CBE по свойству накрест лежащих углов.
- 3. Так как BF биссектриса \angle B, то \angle AEB = \angle CBE.
- 4. $\angle AEB = \angle CBE$, $\angle ABE = \angle CBE$, следовательно, $\angle AEB = \angle ABE$, а $\triangle ABE$ равнобедренный по признаку равнобедренного треугольника, то есть AB = AE, BE основание.
- 5. $\triangle ABE$ равнобедренный AF биссектриса $\angle A$, проведенная к основанию BE, следовательно, AF высота и AF $\perp BE$.
- 6. Рассмотрим △ABF:

∠F = 90° (AF \bot BE), следовательно, △ABF – прямоугольный и AB можно найти по т. Пифагора:

$$AB^2 = AF^2 + BF^2$$
, $AB^2 = 169$,
 $AB^2 = 12^2 + 5^2$, $AB = 13$.

Ответ: AB=13.

7.1. Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN = 12, AC = 42, NC = 25.



Дано:

 $\triangle ABC$, MN||AC, $MN \cap AB=M$, $MN \cap BC=N$, MN=12, AC=42, NC=25.

Найти: BN.

Решение:

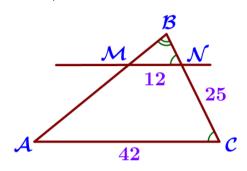
- 1. По условию MN||AC , BC секущая, тогда \angle BCA = \angle BNM по свойству соответсвенных углов.
- 2. Рассмотрим $\triangle ABC$ и $\triangle MBN$: $\angle BNM = \angle BCA$ (п. 1), $\angle B$ общий, следовательно, $\triangle ABC \sim \triangle MBN$ по двум углам, тогда $\frac{MN}{AC} = \frac{BN}{BC}$.
- 3. Пусть BN=x, по условию: MN=12, AC=42, NC=25, тогда равенство $\frac{\text{MN}}{\text{AC}} = \frac{\text{BN}}{\text{BC}}$ принимает вид $\frac{12}{42} = \frac{x}{x+25}$, найдем x:

$$42x=12(x+25)$$
, |:6 $7x-2x=50$, $7x=2(x+25)$, $5x=50$, $x=10$.

4. BN = x = 10.

OTBET: BN=10.

7.2. Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=12, AC=42, NC=25.



Дано:

 \triangle ABC, MN||AC, MN \bigcirc AB=M, MN \bigcirc BC=N, MN=12, AC=42, NC=25.

Найти: BN.

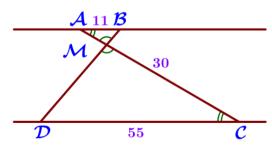
Решение:

- 1. По условию MN||AC , BC секущая, тогда \angle BCA = \angle BNM по свойству соответсвенных углов.
- 2. Рассмотрим $\triangle ABC$ и $\triangle MBN$: $\angle BNM = \angle BCA$ (п. 1), $\angle B$ общий, следовательно, $\triangle ABC \sim \triangle MBN$ по двум углам, тогда $\frac{MN}{AC} = \frac{BN}{BC}$.
- 3. MN=12, AC=42, NC=25, BC=BN+NC=BN+25, тогда равенство $\frac{MN}{AC} = \frac{BN}{BC}$ принимает вид $\frac{12}{42} = \frac{BN}{BN+25}$, найдем BN:

42BN=12(BN+25), |:6 7BN-2BN=50, 7BN=2(BN+25), 5BN=50, 7BN=2BN+50, BN=10.

Ответ: BN=10.

8.1. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=11, CD=55, AC=30.



Дано:

AB \parallel DC, AC \cap BD=M, AB=11, CD=55, AC=30.

Найти: МС.

Решение:

- 1. По условию $AB\|DC$, AC секущая, тогда $\angle BAC = \angle DCA$ по свойству накрест лежащих углов.
- 2. Рассмотрим треугольники ABM и CDM:

∠ВАС = ∠DCA (п. 1), ∠AMB = ∠CMD (свойство вертикальных углов), следовательно, \triangle ABM \sim \triangle CDM по двум углам, тогда $\frac{AM}{MC} = \frac{AB}{DC} = \frac{11}{55} = \frac{1}{5}$.

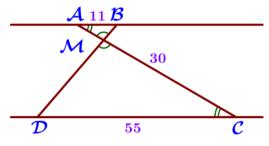
- 3. Пусть AM = x, тогда MC = 5x, так как AM:MC = 1:5.
- 4. АМ+МС=АС=30, составим и решим уравнение:

$$x+5x=30$$
, $6x=30$, $x=5$.

5. MC = 5x = 5.5 = 25.

Ответ: МС=25.

8.2. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=11, CD=55, AC=30.



Дано:

AB \parallel DC, AC \cap BD=M, AB=11, CD=55, AC=30.

Найти: МС.

Решение:

1. Рассмотрим треугольники ABM и CDM:

∠BAC = ∠DCA (накрест лежащие углы при AB||DC и секущей AC), ∠AMB = ∠CMD (вертикальные углы), следовательно, △ABM \sim △CDM по двум углам, тогда $\frac{AM}{MC} = \frac{AB}{DC}$.

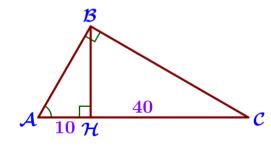
2. Пусть MC=x, тогда AM=AC-MC=30-x, следовательно, равенство $\frac{AM}{MC} = \frac{AB}{DC}$ принимает вид $\frac{30-x}{x} = \frac{11}{55}$, найдем x:

$$11x = 55(30-x)$$
, |:11 $x+5x=150$, $x=5(30-x)$, $6x=150$, $x=150-5x$, $x=25$.

3. MC = x = 25.

Ответ: МС=25.

9.1. Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если АН=10, АС=40.



Дано:

 $\triangle ABC$, $\angle B$ = 90°, BH – высота, AH = 10, AC = 40.

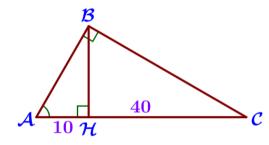
- 1. Рассмотрим △ABC : ∠B = 90° (по условию), тогда \cos ∠A = $\frac{AB}{AC}$.
- 2. Рассмотрим △AHB: ∠AHB=90° (т. к. BH высота), тогда $cos∠A=\frac{AH}{AB}$.
- 3. $\cos \angle A = \frac{AB}{AC}$ (п. 1), $\cos \angle A = \frac{AH}{AB}$ (п. 2), следовательно,

$$\frac{AB}{AC} = \frac{AH}{AB}, \qquad AB^2 = 40 \cdot 10,$$

$$AB^2 = AC \cdot AH, \qquad AB = 20.$$

Ответ: AB = 20.

9.2. Точка Н является основанием высоты, проведённой из вершины прямого угла В треугольника АВС к гипотенузе АС. Найдите АВ, если АН=10, АС=40.



Дано:

 $\triangle ABC$, $\angle B=90^{\circ}$, BH- высота, AH=10, AC=40.

Найти: АВ.

Решение:

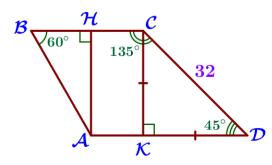
- 1. Так как BH высота, то ∠AHB=90°.
- 2. Рассмотрим треугольники АВН и АСВ:

∠АНВ=∠АВС (∠АНВ=90°,∠АВС=90°), ∠А – общий, следовательно, \triangle АВН~ \triangle АСВ по двум углам, тогда $\frac{AB}{AC} = \frac{AH}{AB}$, следовательно,

$$AB^2 = AC \cdot AH$$
, $AB^2 = 400$,
 $AB^2 = 40 \cdot 10$, $AB = 20$.

Ответ: AB = 20.

10.1. Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135° , а CD=32.



Лано:

ABCD – трапеция, AD∥BC, ∠ABC=60°, ∠BCD=135°, CD=32.

- 1. Проведем высоты АН и СК трапеции ABCD (СК \perp AD, СК \perp BC, АН \perp BC, АН=СК расстояние между AD \parallel BC).
- 2. По условию AD \parallel BC, CD секущая, тогда \angle BCD и \angle ADC односторонние и \angle BCD+ \angle ADC=180 $^{\circ}$, откуда \angle ADC=180 $^{\circ}$ - \angle BCD=180 $^{\circ}$ -135 $^{\circ}$ =45 $^{\circ}$.
- 3. ∠BCD=135° (по условию), ∠BCK=90° (CK высота, CK⊥BC), тогда ∠KCD=∠BCD-∠BCK=135°-90°=45°.
- 4. Рассмотрим △СКD:

∠К = 90° (т.к. СК – высота, СК \bot AD), следовательно, $_{\triangle}$ СКD – прямоугольный; ∠D = 45° (п. 2), ∠C = 45° (п. 3), т.е. ∠D = ∠C, тогда $_{\triangle}$ СКD – равнобедренный по определению; зная, что CD = 32, найдем катет СК по т. Пифагора:

$$CK^2 + KD^2 = CD^2$$
, $CK^2 + CK^2 = 32^2$, $2CK^2 = 32^2$, $CK^2 = 32 \cdot 16$, $CK = 16\sqrt{2}$.

5. Рассмотрим △АВН:

∠H = 90° (т.к. АН – высота, АН \bot ВС), следовательно, △AВН – прямоугольный; ∠B = 60° (по условию), найдем ∠А по теореме о сумме углов треугольника:

$$\angle A + \angle B + \angle H = 180^{\circ},$$
 $\angle A = 180^{\circ} - 60^{\circ} - 90^{\circ},$ $\angle A = 180^{\circ} - \angle B - \angle H,$ $\angle A = 30^{\circ};$

Следовательно, по теореме о катете, лежащем против угла в 30° $BH = \frac{1}{2}AB$; зная, что $AH = CK = 16\sqrt{2}$ (п. 1 и 4), найдем гипотенузу AB по т. Пифагора:

$$AB^{2} = BH^{2} + AH^{2},$$

$$AB^{2} = \left(\frac{1}{2}AB\right)^{2} + AH^{2},$$

$$AB^{2} = \left(\frac{1}{2}AB\right)^{2} + AH^{2},$$

$$AB^{2} - \frac{1}{4}AB^{2} = (16\sqrt{2})^{2},$$

$$\frac{3}{4}AB^{2} = 16^{2} \cdot 2,$$

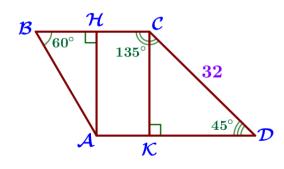
$$AB^{2} = \frac{16^{2} \cdot 2 \cdot 4}{3},$$

$$AB = \frac{16 \cdot \sqrt{2} \cdot 2}{\sqrt{3}},$$

$$AB = \frac{32 \cdot \sqrt{6}}{3}.$$

Ответ: $AB = \frac{32\sqrt{6}}{3}$.

10.2. Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135° , а CD=32.



Дано:

ABCD – трапеция, AD∥BC, ∠ABC=60°, ∠BCD=135°, CD=32.

- 1. По условию AD \parallel BC, CD секущая, тогда \angle BCD и \angle ADC односторонние и \angle BCD+ \angle ADC=180 $^{\circ}$, откуда \angle ADC=180 $^{\circ}$ - \angle BCD=180 $^{\circ}$ -135 $^{\circ}$ =45 $^{\circ}$.
- 2. Проведем высоты АН и СК трапеции ABCD (СК \perp AD, АН \perp BC, АН=СК расстояние между AD \parallel BC).
- 3. Рассмотрим △СКD:

 \angle К = 90° (т.к. СК – высота, СК \bot AD), \angle D = 45° (п. 1), СD = 32 (по условию), тогда $\frac{CK}{CD}$ = \sin \angle D, то есть

$$CK = CD \cdot \sin \angle D = 32 \cdot \sin 45^{\circ} = 32 \cdot \frac{\sqrt{2}}{2} = 16\sqrt{2}.$$

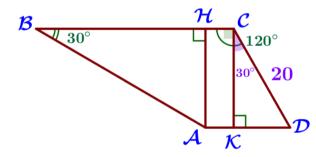
3. Рассмотрим △АВН:

∠H = 90° (т.к. AH – высота, AH \bot BC), ∠B = 60° (по условию), AH = CK = $16\sqrt{2}$ (п. 2-3), тогда $\frac{AH}{AB}$ = \sin ∠B , то есть

AB = AH:
$$\sin \angle B = 16\sqrt{2}$$
: $\sin 60^{\circ} = 16\sqrt{2}$: $\frac{\sqrt{3}}{2} = \frac{16\sqrt{2} \cdot 2}{\sqrt{3}} = \frac{32\sqrt{6}}{3}$.

Ответ: $AB = \frac{32\sqrt{6}}{3}$.

11. Найдите боковую сторону АВ трапеции АВСD, если углы АВС и ВСD равны соответственно 30° и 120°, а CD=20.



Дано:

ABCD – трапеция, AD \parallel BC, \angle ABC=30°, \angle BCD=120°, CD=20.

Найти: АВ.

Решение:

- 1. Проведем высоты АН и СК трапеции ABCD (СК \perp AD, СК \perp BC, АН \perp BC, АН=СК расстояние между AD \parallel BC).
- 2. \angle BCD=120° (по условию), \angle BCK=90° (СК высота, СК \bot BC), тогда \angle KCD= \angle BCD- \angle BCK=120°-90°=30°.
- 3. Рассмотрим △КСD:

∠К=90° (СК – высота, СК \bot AD), тогда △КСD – прямоугольный; гипотенуза CD=20 (по условию), ∠КСD=30° (п. 2), следовательно, тогда по теореме о катете, лежащем против угла в 30°, катет KD=CD:2=20:2=10; по т. Пифагора найдем катет СК:

$$CK^2 + KD^2 = CD^2$$
, $CK^2 = CD^2 - KD^2$, $CK^2 = 20^2 - 10^2$, $CK^2 = 300$, $CK = 10\sqrt{3}$.

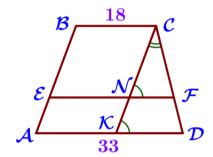
4. Рассмотрим △АВН:

∠H=90° (АН – высота, АН \perp BC,), т.е. \triangle ABH – прямоугольный; ∠B=30° (по условию), катет АН=СК= $10\sqrt{3}$ (п. 1 и 3), тогда по теореме о катете, лежащем против угла в 30°, АН= $\frac{1}{2}$ AB, следовательно, гипотенуза

$$AB = AH \cdot 2 = 10\sqrt{3} \cdot 2 = 20\sqrt{3}$$
.

OTBET: AB = $20\sqrt{3}$.

12.1. Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=33, BC=18, CF:DF=2:1.



Дано:

ABCD – трапеция, BC \parallel AD, EF \parallel AD, EF \parallel BC, EF \cap AB=E, EF \cap CD=F, AD=33, BC=18, CF:DF=2:1.

Найти: EF.

Решение:

- 1. Проведем отрезок СК так, что СК \parallel AB, СК \cap AD=K, СК \cap EF=N.
- 2. ВС|| АD, СК|| АВ, следовательно, АВСК параллелограмм (по определению) и тогда по свойству параллелограмма АК=ВС=18.
- 3. EF||BC, CK||AB, следовательно, BCNE параллелограмм (по определению) и тогда по свойству параллелограмма EN=BC=18.
- 4. По условию EF||AD, KN секущая, тогда $\angle FNC = \angle DKC$ по свойству соответсвенных углов.
- 5. AD=33, AK=18, следовательно, KD=AD-AK=33-18=15.
- 6. CF:DF=2:1, следовательно, CF:CD=2:3.
- 7. Рассмотрим \triangle NCF и \triangle KCD: \angle FNC = \angle DKC (п. 4), \angle C общий, следовательно, \triangle NCF \sim \triangle KCD по двум углам, тогда $\frac{NF}{KD} = \frac{CF}{CD}$.
- 8. KD=15 (п. 5), CF:CD=2:3 (п. 6), $\frac{NF}{KD} = \frac{CF}{CD}$ (п. 7), тогда $\frac{NF}{15} = \frac{2}{3}$, а $NF = \frac{15 \cdot 2}{3} = 10$.
- 9. EF = EN + NF = 18 + 10 = 28.

Ответ: EF = 28.

12.2. Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=33, BC=18, CF:DF=2:1.

 \mathcal{E} \mathcal{K} \mathcal{K} \mathcal{E} \mathcal{K} \mathcal{E} \mathcal{E}

Дано:

ABCD – трапеция, BC \parallel AD, EF \parallel AD, EF \parallel BC, EF \cap AB=E, EF \cap CD=F, AD=33, BC=18, CF:DF=2:1.

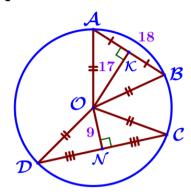
Найти: EF.

Решение:

- 1. Проведем отрезок AC, AC∩EF=K.
- 2. По условию EF \parallel AD, AK секущая, тогда \angle FKC = \angle DAC по свойству соответсвенных углов.
- 3. CF:DF=2:1, следовательно, CF:CD=2:3.
- 4. Рассмотрим \triangle KCF и \triangle ACD: \angle FKC = \angle DAC (п. 2), \angle C общий, следовательно, \triangle KCF \sim \triangle ACD по двум углам, тогда $\frac{CK}{AC} = \frac{KF}{AD} = \frac{CF}{CD}$.
- 5. AD=33 (по условию), CF:CD=2:3 (п. 3), $\frac{KF}{AD} = \frac{CF}{CD}$ (п. 4), тогда $\frac{KF}{33} = \frac{2}{3}$, a $KF = \frac{33 \cdot 2}{3} = 22$.
- 6. $\frac{CK}{AC} = \frac{CF}{CD} = \frac{2}{3}$, следовательно, AK:AC=1:3.
- 7. По условию EF \parallel BC, AK секущая, тогда \angle AKE = \angle ACB по свойству соответсвенных углов.
- 8. Рассмотрим \triangle AEK и \triangle ABC : \angle AKE = \angle ACB (п. 7), \angle A общий, следовательно, \triangle AEK \sim \triangle ABC по двум углам, тогда $\frac{EK}{BC} = \frac{AK}{AC}$.
- 9. BC=18 (по условию), AK:AC=1:3 (п. 6), $\frac{EK}{BC} = \frac{AK}{AC}$ (п. 8), тогда $\frac{EK}{18} = \frac{1}{3}$, а $EK = \frac{18 \cdot 1}{3} = 6$.
- 10. EF=EK+KF=6+22=28.

Ответ: EF = 28.

13. Отрезки AB и CD являются хордами окружности. Найдите длину хорды CD, если AB=18, а расстояния от центра окружности до хорд AB и CD равны соответственно 17 и 9.



Дано:

О – центр окружности, AB и CD – хорды, AB=18, расстояние от О до AB равно 17, расстояние от О до CD равно 9.

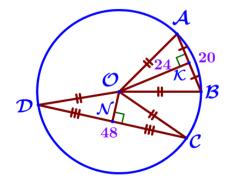
Найти: CD.

Решение:

- 1. Пусть OK расстояние от O до AB, то есть OK \cap AB=K, OK \perp AB, OK=17.
- 2. Пусть ON расстояние от O до CD, то есть ON \cap CD=N, ON \perp CD, ON=9.
- 3. Проведем радиусы ОА, ОВ, ОС и ОD.
- 4. Рассмотрим \triangle AOB: OA=OB (радиусы), тогда \triangle AOB равнобедренный по определению, а OK высота (OK \perp AB) в р/б треугольнике, проведённая к основанию, следовательно, OK медиана, поэтому К середина AB, AK=AB:2=18:2=9.
- 5. Рассмотрим \triangle AOK и \triangle OCN: \angle AKO=90° (OK \perp AB), то есть \triangle AOK прямоугольный, \angle ONC=90° (ON \perp CD), то есть и \triangle OCN прямоугольный; AO=OC (радиусы), AK=ON (AK=9, ON=9), тогда \triangle AOK= \triangle OCN по гипотенузе и катету, следовательно, CN=OK=17.
- 6. Рассмотрим \triangle COD: OC=OD (радиусы), тогда \triangle COD равнобедренный по определению, а ON высота (ON \perp CD) в р/б треугольнике, проведённая к основанию, следовательно, ON медиана, поэтому N середина CD, CD=CN·2=17·2=34.

Ответ: CD = 34.

14. Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=20, CD=48, а расстояние от центра окружности до хорды AB равно 24.



Дано:

О – центр окружности, AB и CD – хорды, AB=20, CD=48, расстояние от О до AB равно 24.

Найти: расстояние от O до CD.

- 1. Пусть OK расстояние от O до AB, то есть OK \cap AB = K, OK \perp AB, OK = 24.
- 2. Пусть ON расстояние от O до CD, то есть ON \cap CD=N, ON \perp CD.
- 3. Проведем радиусы ОА, ОВ, ОС и ОD.
- 4. Рассмотрим $\triangle AOB$: OA=OB (радиусы), тогда $\triangle AOB$ равнобедренный по определению, а OK высота (OK $\perp AB$) в р/б треугольнике, проведённая к основанию, следовательно, OK медиана, поэтому К середина AB, AK=AB:2=20:2=10.
- 5. Рассмотрим \triangle AOK: OK=24, AK=10; \angle AKO=90° (OK \perp AB), следовательно, \triangle AOK прямоугольный и OA можно найти по т. Пифагора:

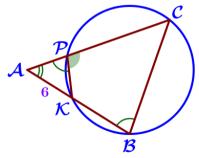
$$OA^2 = AK^2 + OK^2$$
, $OA^2 = 676$,
 $OA^2 = 10^2 + 24^2$, $OA = 26$.

- 6. Рассмотрим \triangle COD: OC=OD (радиусы), тогда \triangle COD равнобедренный по определению, а ON высота (ON \perp CD) в р/б треугольнике, проведённая к основанию, следовательно, ON медиана, поэтому N середина CD, CN=CD:2=48:2=24.
- 7. Рассмотрим \triangle CON: OC=OA=26 (радиусы), CN=24; \angle ONC=90° так как ON \perp CD, следовательно, \triangle CON прямоугольный и ON можно найти по т. Пифагора:

$$OC^2 = ON^2 + NC^2$$
, $ON^2 = 26^2 - 24^2$,
 $ON^2 = OC^2 - NC^2$, $ON^2 = 100$,
 $ON = 10$.

Ответ: расстояние от О до CD равно 10.

15. Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=6, а сторона AC в 1,2 раза больше стороны BC.



Дано:

 \triangle ABC, окружность проходит через вершины В и С и пересекает AB в точке K, AC – в точке P, AK=6, AC=1,2BC.

Найти: КР.

Решение:

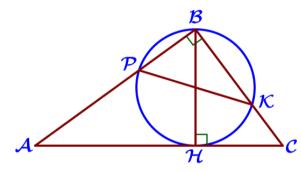
- 1. Четырехугольник ВСРК вписан в окружность, поэтому по свойству вписанного четырехугольника \angle CBK + \angle CPK = 180° , откуда \angle CBK = 180° \angle CPK .
- 2. \angle KPA и \angle CPK смежные, поэтому \angle KPA+ \angle CPK=180°, тогда \angle KPA=180°- \angle CPK .

- 3. \angle CBK=180°- \angle CPK (п.1), \angle KPA=180°- \angle CPK (п.2), следовательно, \angle CBK= \angle KPA.
- 4. Рассмотрим треугольники АВС и АРК:

 \angle CBA = \angle KPA (п. 3), \angle A – общий, следовательно, \triangle ABC \sim \triangle APK по двум углам, тогда $\frac{AC}{AK} = \frac{CB}{KP}$, откуда $KP = \frac{AK \cdot BC}{AC} = \frac{6 \cdot BC}{1,2BC} = \frac{60}{12} = 5$.

Ответ: KP=5.

16. Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите ВН, если РК=8.



Дано:

 $\triangle ABC$ – прямоугольный, $\angle B = 90^{\circ}$, ВН – высота, окружность с диаметром ВН пересекает AB в точке P, ВС – в точке K, PK=8.

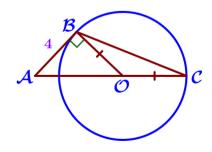
Найти: ВН.

Решение:

- 1. \angle В вписан в окружность и опирается на дугу РНК, следовательно, по теореме о вписанном угле \angle В= $\frac{1}{2}$ \cup РНК, \cup РНК= \angle В·2=90°·2=180°, то есть \cup РНК полуокружность, РК диаметр.
- 2. ВН и РК диаметры одной окружности, значит ВН=РК=8.

OTBET: BH=8.

17. Окружность с центром на стороне АС треугольника ABC проходит через вершину С и касается прямой AB в точке В. Найдите АС, если диаметр окружности равен 8,4, а AB=4.



Дано:

 $\triangle ABC$, О – центр окружности, О \in AC, окружность проходит через точку С и касается AB в точке B, диаметр окружности равен 8,4, AB=4.

Найти: АС.

Решение:

- 1. Проведем радиус ОВ.
- 2. Диаметр окружности равен 8,4, ОВ и ОС радиусы, следовательно, OB=OC=8,4:2=4,2.

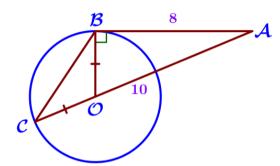
- 3. AB касательная, OB радиус, B точка касания, тогда по свойству касательной $OB \perp AB$.
- 4. Рассмотрим $\triangle ABO$: $\angle ABO = 90^{\circ}$ (OB $\perp AB$), следовательно, $\triangle ABO прямоугольный; AB=4 (по условию), OB=4,2 (п.2), найдем AO по т. Пифагора:$

$$AO^2 = AB^2 + OB^2$$
, $AO^2 = 33,64$,
 $AO^2 = 4^2 + 4,2^2$, $AO = 5,8$.

5. AC = AO + OC = 5,8 + 4,2 = 10.

OTBET: AC = 10.

18.1. Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите диаметр окружности, если АВ=8, АС=10.



Дано:

 $\triangle ABC$, О – центр окружности, О \in AC, окружность проходит через точку С и касается AB в точке B, AB=8, AC=10.

Найти: диаметр окружности.

Решение:

- 1. Проведем радиус ОВ.
- 2. OB и ОС радиусы, следовательно, ОС = OB.
- 3. AC = AO + OC, следовательно, AO = AC OC = 10 OB.
- 4. AB касательная, OB радиус, B точка касания, тогда по свойству касательной OB \perp AB.
- 5. Рассмотрим $\triangle ABO$: $\angle ABO = 90^{\circ}$ (OB $\perp AB$), следовательно, $\triangle ABO прямоугольный; AB=8 (по усл.), AO=10-OB (п.3), найдем OB по т. Пифагора:$

$$OB^{2} + AB^{2} = AO^{2},$$

$$OB^{2} + 8^{2} = (10 - OB)^{2},$$

$$OB^{2} + 8^{2} = 100 - 20 \cdot OB + OB^{2},$$

$$OB^{2} - OB^{2} + 20 \cdot OB = 100 - 64,$$

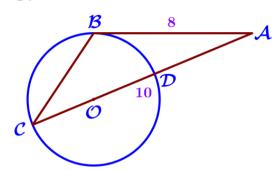
$$20 \cdot OB = 36,$$

$$OB = \frac{36}{20}, OB = 1,8.$$

4. Радиус окружности равен 1,8, следовательно, диаметр – 3,6.

Ответ: диаметр окружности равен 3,6.

18.2. Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=8, AC=10.



Дано:

 \triangle ABC, О – центр окружности, О \in AC, окружность проходит через точку С и касается AB в точке B, AB=8, AC=10.

Найти: диаметр окружности.

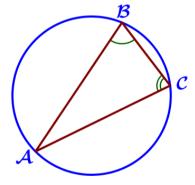
Решение:

- 1. Пусть D точка пересечения окружности со стороной AC, CD диаметр.
- 2. AC=AD+CD, следовательно, AD=AC-CD=10-CD.
- 3. АВ касательная, АС секущая, тогда по свойству секущей и касательной, проведенных из одной точки к окружности:

$$AB^2 = AD \cdot AC$$
, $10 \cdot CD = 100 - 64$, $8^2 = (10 - CD) \cdot 10$, $10 \cdot CD = 36$, $CD = 3$, $CD =$

Ответ: диаметр окружности равен 3,6.

19.1. Углы В и С треугольника АВС равны соответственно 61° и 89°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 8.



Дано:

 $\triangle ABC$, $\angle B=61^\circ$, $\angle C=89^\circ$, радиус окружности, описанной около $\triangle ABC$, равен 8.

Найти: ВС.

Репление:

1. Рассмотрим △ABC : ∠B=61°, ∠C=89°, тогда по теореме о сумме углов треугольника найдем ∠A :

$$\angle A + \angle B + \angle C = 180^{\circ},$$

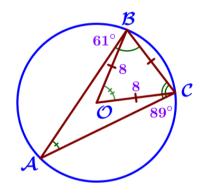
 $\angle A = 180^{\circ} - \angle B - \angle C,$
 $\angle A = 180^{\circ} - 61^{\circ} - 89^{\circ},$
 $\angle A = 30^{\circ}.$

2. По расширенной теореме синусов известно, что $\frac{BC}{\sin \angle A}$ = 2R; R – радиус описанной окружности, R=8 (по условию), $\angle A$ = 30° (п. 1), тогда

BC =
$$2R \cdot \sin \angle A = 2 \cdot 8 \cdot \sin 30^{\circ} = 16 \cdot \frac{1}{2} = 8$$
.

OTBET: BC=8.

19.2. Углы В и С треугольника АВС равны соответственно 61° и 89°. Найдите ВС, если радиус окружности, описанной около треугольника АВС, равен 8.



Дано:

 $\triangle ABC$, $\angle B = 61^{\circ}$, $\angle C = 89^{\circ}$, радиус окружности, описанной около $\triangle ABC$, равен 8.

Найти: ВС.

Решение:

1. Рассмотрим $\triangle ABC$: $\angle B=61^\circ$, $\angle C=89^\circ$, тогда по теореме о сумме углов треугольника найдем $\angle A$:

$$\angle A + \angle B + \angle C = 180^{\circ},$$

 $\angle A = 180^{\circ} - \angle B - \angle C,$
 $\angle A = 180^{\circ} - 61^{\circ} - 89^{\circ},$
 $\angle A = 30^{\circ}.$

- 2. \angle A вписан в окружность и опирается на дугу BC, следовательно, по теореме о вписанном угле \angle A = $\frac{1}{2}$ \cup BC, откуда \cup BC = \angle A \cdot 2 = 30° \cdot 2 = 60°.
- 3. Пусть О центр окружности, тогда ∠ВОС центральный и ∠ВОС = ∪ВС = 60°.
- 4. OB и ОС радиусы окружности, следовательно, OB=OC=8.
- 5. Рассмотрим △ВОС:
- а) так как OB=OC, то △BOC равнобедренный (с основанием BC) по определению, следовательно, ∠OBC=∠OCB;
- б) $\angle BOC = 60^{\circ}$, $\angle OBC = \angle OCB$, тогда по теореме о сумме углов треугольника $\angle OBC = \angle OCB = \frac{180^{\circ} \angle BOC}{2} = \frac{180^{\circ} 60^{\circ}}{2} = 60^{\circ}$;
- в) $\angle BOC = 60^{\circ}$, $\angle OBC = 60^{\circ}$, то есть $\angle BOC = \angle OBC$, тогда $\triangle BOC = paвнобедренный (с основанием OB) по признаку равнобедренного треугольника, следовательно, <math>BC = OC = 8$.

OTBET: BC = 8.